CHALLENGES AND OPPORTUNITIES IN MANAGING SERIOUS BACTERIAL INFECTIONS

A Role for Pathogen-Directed Therapy

Wednesday, October 8, 2014 8:00 – 10:00 PM Pennsylvania Convention Center Philadelphia, PA

Program Information	2
Accreditation Information	4
Faculty Bios	5
Educational Program	9
Continuing Professional Development	58

EDUCATIONAL OVERVIEW

The pandemic of multidrug-resistant (MDR) bacteria and their continuing spread is well recognized. The growing prevalence of MDR pathogens in the community and healthcare settings has challenged clinicians in maintaining a high quality of care. Of particular concern are infections caused by Gram-positive bacteria (i.e., methicillin-resistant *S. aureus* [MRSA], vancomycin-resistant enterococci [VRE]), Gram-negative pathogens (MDR *P. aeruginosa*, ESBL-producing and carbapenem-resistant Enterobacteriaceae), and *Clostridium difficile*. Compared to susceptible organisms, infections caused by these pathogens are associated with higher failure rates, mortality, and healthcare resource utilization. When an MDR infection is suspected, it is critical to consider multiple patient-, pathogen-, and drug-related factors in selecting an optimal therapeutic option.

This educational program utilizes a case-based approach to demonstrate how management strategies are tailored to patient and pathogen factors. Understanding how these factors can influence therapeutic selection is a critical component for successful outcomes and underscores the importance of collaboration among the various disciplines when addressing the challenges of MDR infections. The program is divided into three learning blocks that focus on 1) Gram-positive pathogens, 2) Gram-negative pathogens, and 3) C. difficile. Each block is designed to open and conclude with an interactive patient case scenario that reflects the challenges and decision-making process that occurs regularly in clinical practice when managing these difficult infections.

TARGET AUDIENCE

Optimal management of serious bacterial infections requires an interdisciplinary approach that includes all healthcare providers (HCPs) involved in the management of patients with or at risk for these infections. Therefore, this continuing medical education activity targets healthcare providers at the forefront of diagnosing, managing, and preventing infections at healthcare institutions. These include ID specialists, infection control specialists, hospital epidemiologists, clinical microbiologists, and clinical pharmacists.

LEARNING OBJECTIVES

Healthcare professionals participating in this educational activity will be able at its conclusion to:

- Apply evidence-based guideline recommendations into clinical practice when managing hospitalized patients with serious bacterial infections
- Identify strategies to optimize the use of available antimicrobial agents to treat multidrug-resistant bacterial infections in a pathogen-directed approach
- Evaluate new and emerging therapeutic options for treating serious bacterial infections

FACULTY

Thomas M. File, Jr., MD, MS, MACP, FIDSA, FCCP

Chair, Infectious Disease Division Summa Health System Akron, OH Professor, Internal Medicine Master Teacher; Chair, Infectious Disease Section Northeast Ohio Medical University Rootstown, OH

Marin H. Kollef, MD, FACP, FCCP

Professor of Medicine, Division of Pulmonary and Critical Care Medicine Virginia E. & Sam J. Golman Chair in Respiratory Intensive Care Medicine Director, Critical Care Research Director, Respiratory Care Services Barnes-Jewish Hospital St. Louis, MO

Carlene A. Muto, MD, MS

Associate Professor of Medicine Medical Director of Infection Control and Hospital Epidemiology Center for Quality Improvement and Innovation UPMC Health System Pittsburgh, PA

EDUCATIONAL PROGRAM

Registration: 7:30 PM – 8:00 PM Educational Program: 8:00 PM – 10:00 PM

- 8:00 8:10 PM MDR-GLOBAL PUBLIC HEALTH THREAT
- 8:10 9:50 PM IMPROVING PATIENT CARE

Practice Case 1 Gram-Positive Infections Optimized Approaches in Managing Gram-Positive Infections Back to Practice Case 1 Thomas M. File, Jr., MD, MS, MACP, FIDSA, FCCP

Practice Case 2 Gram-Negative Infections Optimized Approaches in Managing Gram-Negative Infections Back to Practice Case 2 Marin H. Kollef, MD, FACP, FCCP

Practice Case 3 Clostridium difficile Infections Optimized Approaches in Managing C. difficile Infections Back to Practice Case 3 Carlene A. Muto, MD, MS

9:50 - 10:00 PM OPEN FORUM: Q&A

ACCREDITATION

PHYSICIANS

This activity has been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education through the joint providership of the Center for Independent Healthcare Education (Center) and Vemco MedEd. Center is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.

Center designates this live activity for a maximum of 2.0 AMA PRA Category 1 Credit(s)TM. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

PHARMACISTS

Center for Independent Healthcare Education is accredited by the Accreditation Council for Pharmacy Education as a provider for continuing pharmacy education. Center has assigned 2.0 contact hours (0.2 CEUs) of continuing pharmacy education credits for participating in this activity.

ACPE UAN: 0473-9999-14-007-L01-P Activity type: Application-based

For questions regarding accreditation, please contact info@jointsponsor.com.

INSTRUCTIONS FOR CREDIT

To receive a Certificate of Credit, participants must register for the symposium, document attendance, and complete and return the evaluation form.

Physicians: A Certificate of Credit will be emailed to you 4 weeks after the symposium.

Pharmacists: The information that you participated will be uploaded to CPE Monitor and you will be able to access your credits from the profile you set up with NABP. For more information, please visit http://www.nabp.net/.

DISCLOSURE OF CONFLICTS OF INTEREST

In accordance with policies set forth by the Accreditation Council for Continuing Medical Education (ACCME), Center for Independent Healthcare Education requires all faculty members and spouses/significant others with an opportunity to affect the content of a continuing education activity to disclose any relevant financial relationships during the past 12 months with commercial interests. A commercial interest is any entity producing, marketing, reselling or distributing health care goods or services consumed by or used on patients. Relationships with commercial interests and conflicts of interest resulting from those relationships must be revealed to the audience and resolved prior to the activity. Relevant relationships include roles such as speaker, author, consultant, independent contractor (including research), employee, investor, advisory committee member, board member, review panelist, and investigator. If a potential speaker or author indicates a possible conflict of interest, the conflict will be resolved by choosing another speaker or author for that topical area, or the slides, handouts, and/or monograph will be reviewed and approved by a qualified commercially-disinterested peer.

PLANNING COMMITTEE MEMBERS

Thomas M. File, Jr., MD, MS, MACP, FIDSA, FCCP Marin H. Kollef, MD, FACP, FCCP

Carlene A. Muto, MD, MS

Paul DeLisle

Marco Cicero, PhD

Maja Drenovac, PharmD, CCMEP

DISCLOSURE OF FINANCIAL INTEREST SUMMARY

Thomas M. File, Jr., MD (Faculty/Planner) has relevant financial relationships with commercial interests as follows:

- Advisory Board: Cubist Pharmaceuticals, Forest Laboratories, GlaxoSmithKline, Merck & Co., Pfizer, Tetraphase
- Grant Recipient/Research Support: Pfizer, Cempra

Dr. File intends to discuss the off-label use of following: Non-approved uses of drugs for MDR pathogens.

Marin H. Kollef, MD (Faculty/Planner) has relevant financial relationships with the following commercial interests:

- Advisory Board: Cubist Pharmaceuticals and Merck & Co.
- Consultant: Cardeas, Accelerate
- Speaker's Bureau: Cubist Pharmaceuticals and Merck & Co.

Dr. Kollef does not intend to discuss the off-label use of any products.

Carlene A. Muto, MD, MS (Faculty/Planner) does not have relevant financial relationships with commercial interests.

Dr. Muto does not intend to discuss the off-label use of any products.

COMMERCIAL SUPPORT

This activity is supported by an educational grant from **Cubist Pharmaceuticals**.

FACULTY BIOS

Thomas M. File, Jr., MD, MS, MACP, FIDSA, FCCP

Chair, Infectious Disease Division Summa Health System Akron, OH Professor, Internal Medicine Master Teacher; Chair, Infectious Disease Section Northeast Ohio Medical University Rootstown, OH

Dr. Thomas File is Chair of the Infectious Disease Division at Summa Health System in Akron, Ohio, USA and Professor of Internal Medicine, Master Teacher, and Chair of the Infectious Disease Section at Northeast Ohio Medical University in Rootstown, Ohio. After graduating from medical school at the University of Michigan, Ann Arbor, in 1972, Dr. File received his Master of Science in medical microbiology from Ohio State University in Columbus, in 1977, where he also completed his fellowship in infectious diseases.

Dr. File is Past President of the Board of Directors of the National Foundation for Infectious Diseases. He is a Master of the American College of Physicians, a Fellow and past member of the Board of Directors of the Infectious Diseases Society of America (IDSA), and a fellow of the American College of Chest Physicians. He is a member of many other professional societies, including the American Society for Microbiology, the American Thoracic Society (ATS), and the European Society of Clinical Microbiology and Infectious Diseases. He is a past Chairperson of the Standards and Practice Guidelines Committee of the IDSA and has also served as a member of the IDSA and ATS committees for guidelines on community-acquired pneumonia; and is a member of the IDSA guidelines panels for hospital-acquired pneumonia, influenza, and sinusitis. He is a pastpresident of the Infectious Disease Society of Ohio, and is a past president of the Northeastern Ohio Task Force on AIDS.

Primary research interests that Dr. File has pursued include community-acquired respiratory tract infections, immunizations in adults, bacterial resistance in respiratory infections, infections in patients with diabetes, soft tissue infections, antimicrobial stewardship, and evaluation of new antimicrobial agents. A frequent lecturer both nationally and internationally, Dr. File has published more than 250 articles, abstracts, and textbook chapters, focusing on the diagnosis, etiology, and treatment of infectious diseases, especially on respiratory tract infections. He co-authored File TM Jr. and Stevens DL Contemporary Diagnosis and Management of Skin and Soft Tissue Infections, 3rd Ed (2011, published by Handbooks in Health Care Co.) and co-edited Tan JS, File TM Jr., Salata RA, Tan MJ (eds.) Expert Guide to Infectious Diseases, 2nd edition(2008, published by ACP Press, Phil.). He authors sections on community-acquired pneumonia, acute bronchitis, and hospital-acquired pneumonia in UpToDate. In addition, he is Editor-in-Chief of Infectious Diseases in Clinical Practice.

Marin H. Kollef, MD, FACP, FCCP

Professor of Medicine, Division of Pulmonary and Critical Care Medicine Virginia E. & Sam J. Golman Chair in Respiratory Intensive Care Medicine Director, Critical Care Research Director, Respiratory Care Services Barnes-Jewish Hospital St. Louis, MO

Dr. Marin Kollef is a Professor of Medicine at Washington University School of Medicine and Director of the Medical Intensive Care Unit and Respiratory Care Services at Barnes-Jewish Hospital in St. Louis, Missouri. He is a member of the Barnes-Jewish Hospital Critical Care Committee. Dr. Kollef was awarded Virginia E. and Sam J. Golman Chair in Respiratory Intensive Care Medicine in 2009.

After completing his Bachelor of Science from the US Military Academy in West Point, NY, Dr. Kollef went on to receive his Doctor of Medicine degree from University of Rochester School of Medicine and Dentistry. Dr. Kollef then completed his residency in Internal Medicine and fellowship in Pulmonary Diseases and Critical Care at the Madigan Army Medical Center in Tacoma, Washington. He is a fellow of the American College of Physicians and the American College of Chest Physicians.

Dr. Kollef has lectured extensively on numerous critical care topics, including ventilatorassociated pneumonia, antibiotic resistance, and optimization of antibiotic therapy. Dr. Kollef has authored peer-reviewed manuscripts, letters, case reports, editorials, and invited publications. He currently serves on the editorial boards of *Respiratory Care, Critical Care, Critical Care Medicine, Informed Decisions/Clinical Strategies,* and *Journal of Surgical Infections* and is a reviewer for many journals including *Chest, JAMA*, and the New England *Journal of Medicine*.

Dr. Kollef is the recipient of numerous honors and awards including selection to "Best Doctors in America," Central Region and Barnes-Jewish Hospital Team Awards for Quality Improvement for programs directed to VAP prevention, bloodstream infection prevention, and the "Surviving Sepsis Initiative." He has received teaching awards and is a recognized expert in the performance of clinical outcomes research in the ICU setting. His clinical research focus has been the understanding and prevention of nosocomial infections and the improved care of mechanically-ventilated patients. He is also a member of the American Thoracic Society, Society of Critical Care Medicine, American Association for Respiratory Care, and American Society of Clinical Investigation.

Carlene A. Muto, MD, MS

Associate Professor of Medicine Medical Director of Infection Control and Hospital Epidemiology Center for Quality Improvement and Innovation UPMC Health System Pittsburgh, PA

Dr. Carlene Muto is Associate Professor, Epidemiology and Medicine, Division of Infectious Diseases at the University of Pittsburgh School of Medicine in Pittsburgh, PA. Dr. Muto also serves as the Medical Director of Infection Control and Hospital Epidemiology at the Center for Quality Improvement and Innovation at the UPMC Health System.

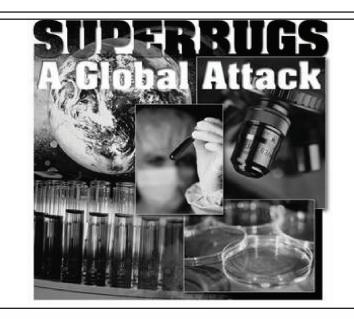
After completing her Master of Science in Health Evaluation Sciences at the University of Virginia, Virginia Graduate School of Arts and Sciences in Charlottesville, VA, Dr. Muto went on to receive her Doctor of Medicine from Temple University School of Medicine in Philadelphia, PA. Dr. Muto then completed her internal medicine residency at Temple University Hospital and her infectious diseases fellowship at the University of Virginia Health Center.

A nationally recognized leader in reducing hospital infection rates, Dr. Muto's research interests include the control of antibiotic-resistant organisms, such as methicillin-resistant *Staphylococcus aureus* (MRSA), vancomycin-resistant enterococci (VRE), and *Clostridium difficile*. She has also studied the use of electronic surveillance to identify important pathogens and the effects of mandatory public reporting of hospital-acquired infections. As a result of her groundbreaking work, she has been invited to lecture around the world on effective infection control strategies.


Dr. Muto chairs the Society for Healthcare Epidemiology of America's (SHEA) Antibiotic Resistance Task Force and was the first author of the SHEA Guideline on Preventing Spread of Antibiotic Resistance. She is also a member of and medical advisor to the Southwestern Pennsylvania Professionals in Infection Control (SWPPIC) Regional MRSA Prevention Collaborative.

MDR - Global Public Health Threat

Thomas M. File, Jr., MD, MS, MACP, FIDSA, FCCP


Chair, Infectious Disease Division Summa Health System Akron, OH Professor, Internal Medicine Master Teacher; Chair, Infectious Disease Section Northeast Ohio Medical University Rootstown, OH More Americans die each year from antibiotic-resistant bacteria than AIDS, and there are no new drugs coming By Tim Fernholz — November 7, 2013

Antibiotic resistance: a threat to global health security

May, 2013

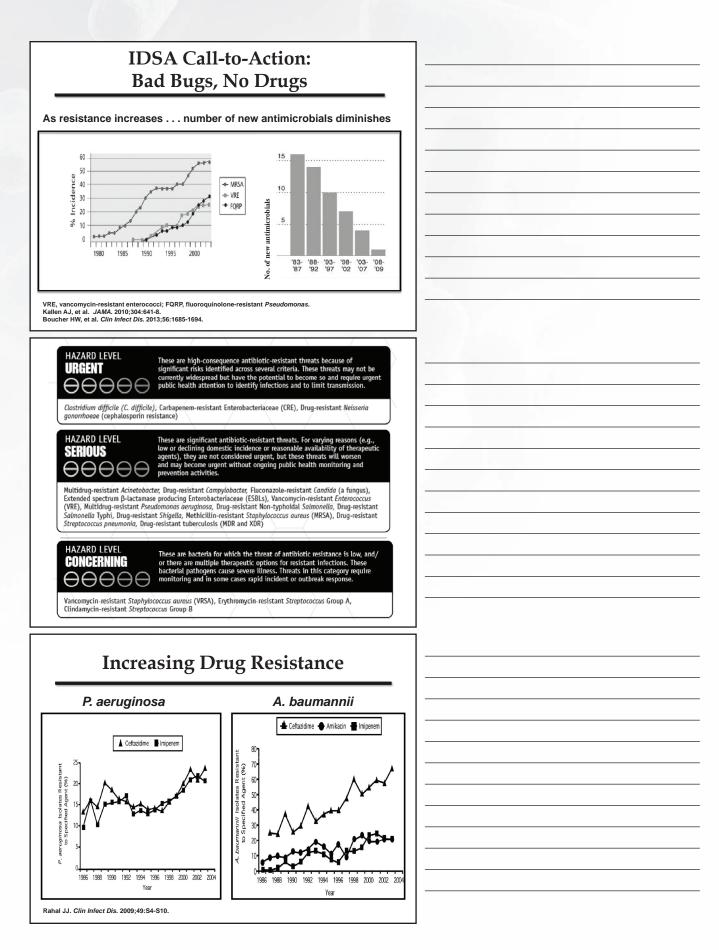
Antimicrobial Resistance: Concern by Developers

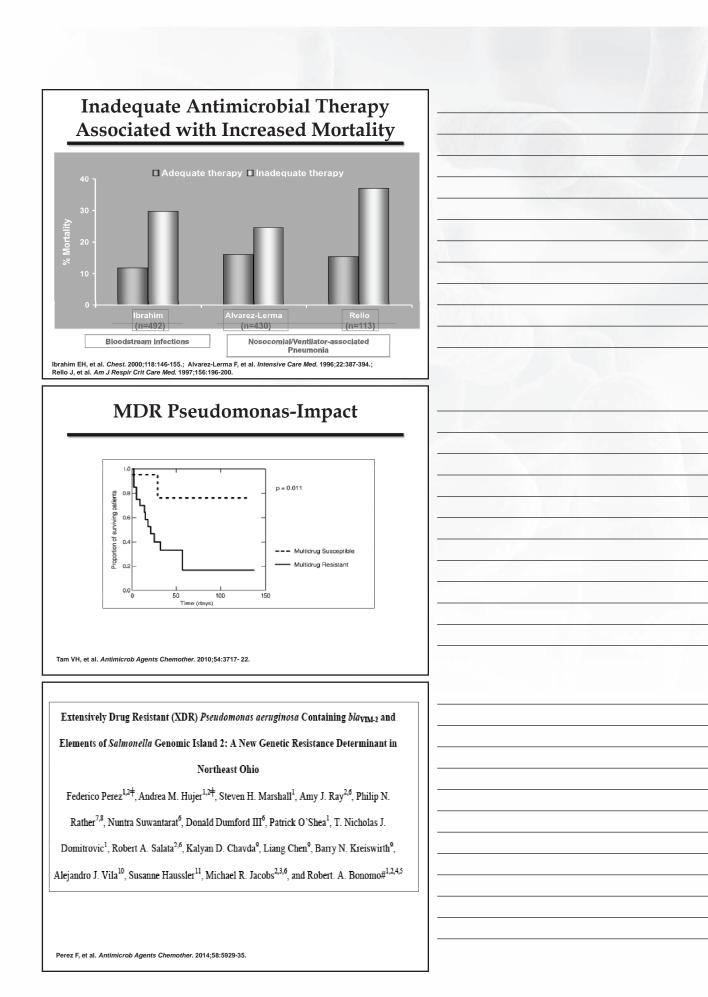
'Drug resistance follows the drug like a faithful shadow' . Paul Erhlich, 1854–1915

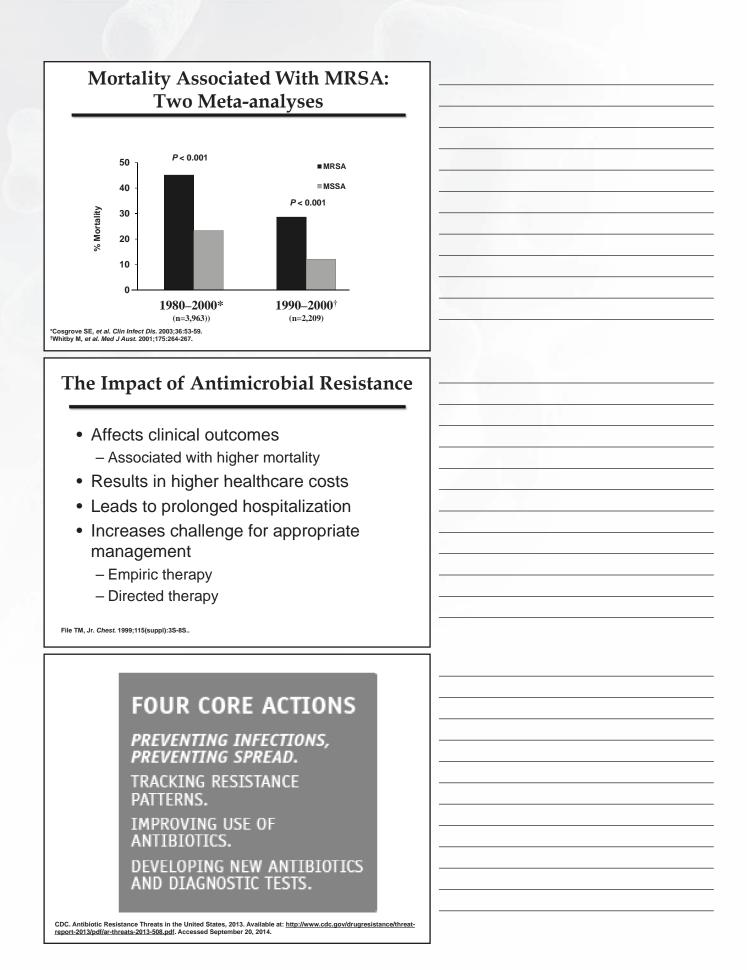
"....there is the danger that the ignorant man may easily underdose himself and by exposing his microbes to non-lethal quantities of the drug make them resistant." Alexander Fleming, Nobel Prize lecture, Dec 11, 1945

*bacteria and fungus included in this report

CDC. Antibiotic Resistance Threats in the United States, 2013. Available at: <u>http://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf.</u> Accessed September 20, 2014.


Morbidity and Mortality of MDR Organisms


Organism	Infections included	Est. # of cases	Est. annual # deaths
MRSA	Invasive	80,000	11,000
VRE	HAIs	20,000	1,300
DRSP	All infections	1,200,000	7,000
ESBL-producing	HAI; <i>E. coli,</i> <i>K. pneumoniae</i>	26,000	1,700
CRE	HAIs; <i>E. coli,</i> <i>K. pneumoniae</i>	9,300	610
MDR <i>Pseudomonas</i> spp.	HAIs	6,700	440
MDR Acinetobacter spp.	HAIs	7,300	500


DRSP, drug-resistant S. pneumoniae; HAI, hospital-acquired infection; MDR, multidrug-resistant; CRE, carbapenemresistant Enterobacteriaceae; ESBL, extended-spectrum beta-lactamase; VRE, vancomycin-resistant enterococci CDC. Antibiotic Resistance Threats in the United States, 2013. Available at: <u>http://www.cdc.gov/drugresistance/threatreport-2013/pdf/ar-threats-2013-508.pdf</u>. Accessed September 20, 2014.

	Ľ.		

Challenges and Opportunities in Managing Serious Bacterial Infections: A Role for Pathogen-Directed Therapy 11

Practice Case 1 Gram-Positive Infections Optimized Approaches in Managing Gram-Positive Infections

Thomas M. File, Jr., MD, MS, MACP, FIDSA, FCCP

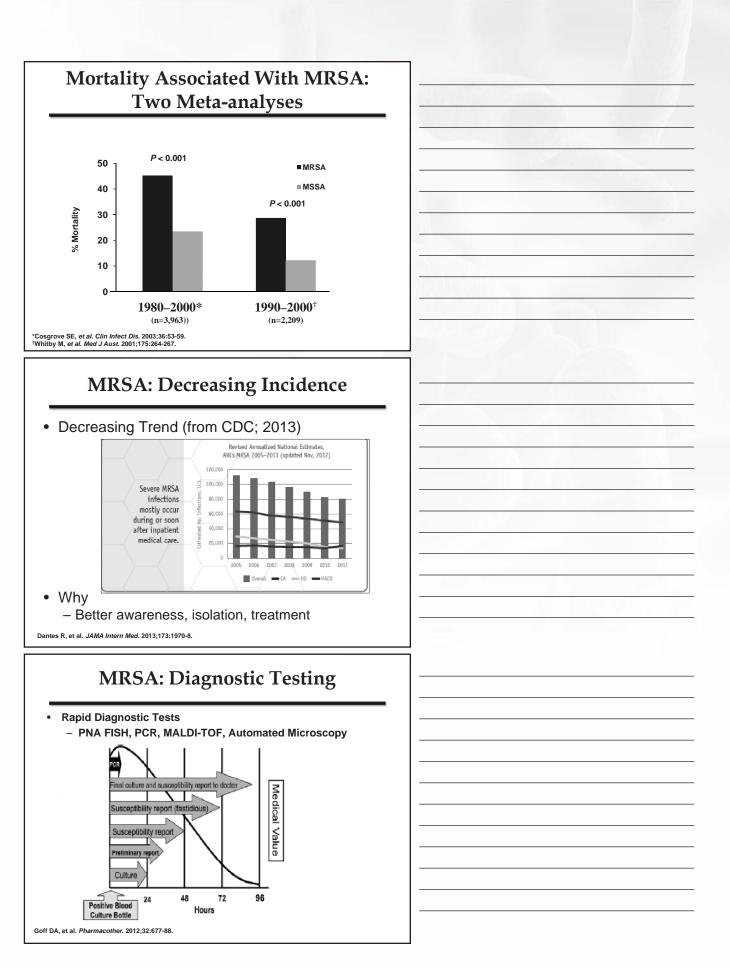
Chair, Infectious Disease Division Summa Health System Akron, OH Professor, Internal Medicine Master Teacher; Chair, Infectious Disease Section Northeast Ohio Medical University Rootstown, OH

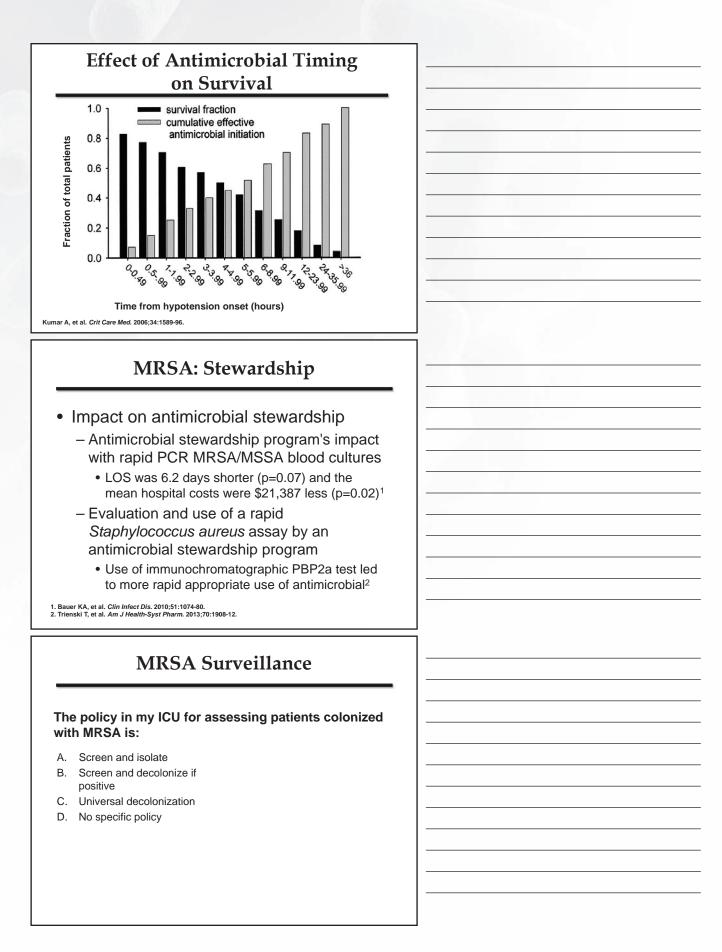
Morbidity and Mortality of MDR Organisms

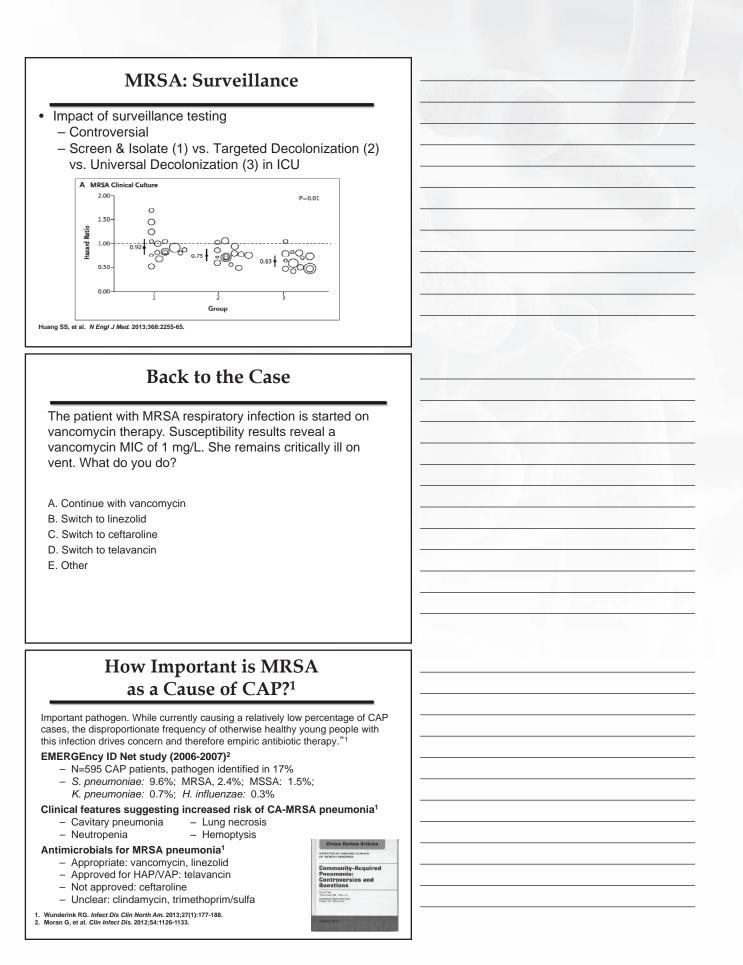
Organism	Infections included	Est. # of cases	Est. annual # deaths
MRSA	Invasive	80,000	11,000
VRE	HAIs	20,000	1,300
DRSP	All infections	1,200,000	7,000
ESBL-producing	HAI; <i>E. coli,</i> <i>K. pneumoniae</i>	26,000	1,700
CRE	HAIs; <i>E. coli,</i> <i>K. pneumoniae</i>	9,300	610
MDR <i>Pseudomonas</i> spp.	HAIs	6,700	440
MDR Acinetobacter spp.	HAIs	7,300	500

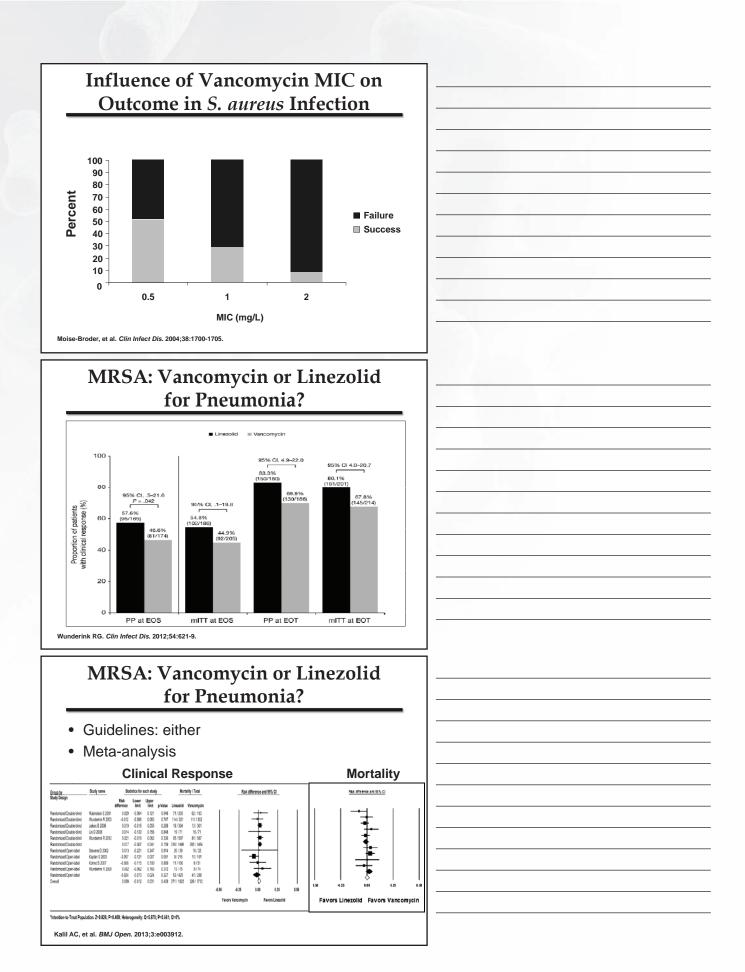
DRSP, drug-resistant S. pneumoniae; HAI, hospital-acquired infection; MDR, multidrug-resistant; CRE, carbapenemresistant Enterobacteriaceae; ESBL, extended-spectrum beta-lactamase; VRE, vancomycin-resistant enterococci CDC. Antibiotic Resistance Threats in the United States, 2013. Available at: <u>http://www.cdc.gov/drugresistance/threatreport-2013/pd/jar-threats-2013-508.pdf</u>. Accessed September 20, 2014.

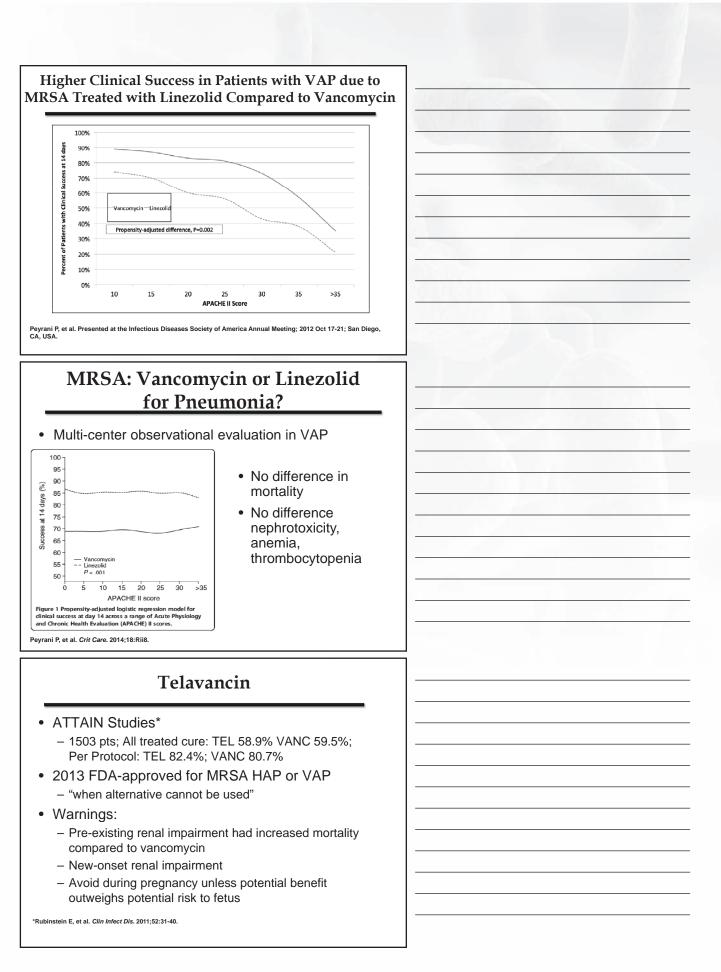
Case: 30 y/o female presents to ER with fever and respiratory distress; immediate intubation; history of ILI (influenza-like illness); Ceftriaxone and azithromycin initiated at time of intubation. Gram stain obtained.

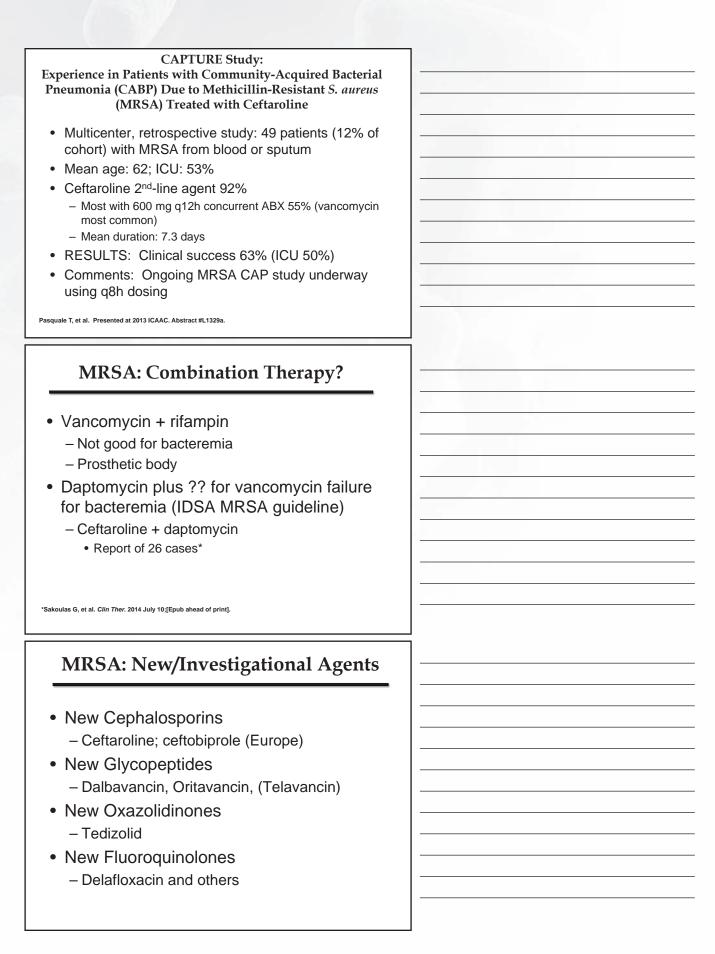

Based on Gram stain, what is your choice of antimicrobial ?

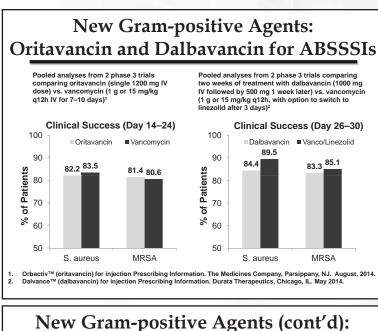

- A. Clindamycin
- B. Ceftaroline
- C. Telavancin
- D. Vancomycin
- E. Linezolid


CXR, Stain courtesy of T File MD.


Challenges


- MRSA
 - Impact (vs MSSA)
 - Diagnosis
 - Surveillance
 - Treatment
- DRSP
 - Increasing resistance
 - Treatment

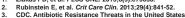






Tedizolid vs. Linezolid for ABSSSIs

Pooled analyses from 2 phase 3 trials comparing tedizolid 200 mg QD for 6 days vs. linezolid 600 mg BID for 10 days for the treatment of ABSSSI.


Clinical Response at Post-Therapy Evaluation* by Pathogen

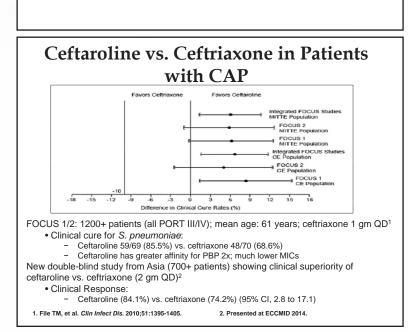
Vancomycin-Resistant Enterococci (VRE): Impact

- Most prevalent in E. faecium
- Significant burden of infection ³ . Common nosocomial pathogen
 - Intra-abdominal, urinary tract infections, bacteremia
- Infection control and antimicrobial stewardship both needed to control²
 - A variety of antibiotic classes have been implicated as influencing rates of resistance High prevalence of colonization
 - (estimates up to 10.6% in ICU patients) an important determinant of infection

	Percent of all Enterococcus healthcare-associated infections resistant to vancomycin	inenie er er	Estimated number of deaths attributed
Vancomycin-resistant Enterococcus faecium	77%	10,000	650
Vancomycin-resistant Enterococcus faecalis	9%	3,100	200
Vancomycin-resistant Enterococcus (species not determined)	40%-	6,900	450
Totals	\rightarrow	20,000	1,300
		1	rom reference

Ziakas PD, et al. *PLoS ONE*. 2013;8(9):e75658. Rubinstein E, et al. *Crit Care Clin*. 2013;29(4):841-52. CDC. Antibiotic Resistance Threats in the United States, 2013. Available http://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf

	·
_	
number of	
ributed	
10	
10	
i0	
00	
00	
erence 3	

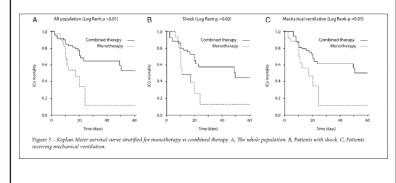

Parenteral Therapy for Infections Due to VRE

Regimen	Dosage* and route
Ampicillin-susceptible e	nterococci
Monotherapy:	
Ampicillin (+/- sulbactam)•	6-12 g per 24 hours in 6 equally divided doses
Combination therapy:	
Above plus one of the	following: (for bactericidal activity)
Gentamicino	3 mg/kg per 24 hours in 3 equally divided doses
Streptomycin§	15 mg/kg per 24 hours in 2 equally divided doses
Ampicillin-resistant E fa	ecium: One of the following
High-dose ampicillin¥	18-30 g per day‡
Linezolid	1200 mg per 24 hours in 2 equally divided doses
Daptomycin†	For E faecalis: 4 mg/kg every 24 hours (approved dose for complicated skin and soft tissue infection)
	Higher dosing (3 to 12 mg/kg every 24 hours) may be more efficacious for life threatening infections due to E. faecalis or E. faecium.
Tigecycline**	100 mg loading dose followed by maintenance dosing 50 mg every 12 hours
Quinupristin- dalfopristin	22.5 mg/kg per 24 hours in 3 equally divided doses

Murray BE. UpToDate, 2014. Available at: http://www.uptodate.com/contents/treatment-of-enterococcal-infections

CABP: Unmet Needs

- · Increasing resistance
 - Macrolide resistant S. pneumoniae: now > 40% in US
 - Penicillin/Ceftriaxone resistant S. pneumoniae increasing approaching 10% adults (Wenzler et al. Infect Dis Clin Pract. 2014)
 - Macrolide resistant Mycoplasma: now > 90% parts of Asia
 - MRSA (3-5% of CAP)
 - GNR- common in some locations; multiple resistance patterns
- · Collateral 'Damage' of existing regimens
 - Fluoroquinolones: resistant GNR; C. difficile infection; AEs: QTc, tendons, liver, phototoxicity
 - Azithromycin: QTc
 - Ceftriaxone: C. difficile infection
- Monotherapy options


Ceftriaxone Non-Susceptibility in Emerging (35B) and Persisting (19A, 19F) *S. pneumoniae* Serotypes in the USA (2011-2012)

Only ceftare	oline reta	ains activ	rity amo	ng beta	lactams	;
	Percentage collection)	ercentage of non-susceptible rates ^a and MIC _{50/90} values (2011-2012 ollection):				
Serotype (no. tested)	Ceftriaxon suscep t ible	e (MIC for n :)	on-	Ceftarolii suscep t ib	ne (MIC for 1 le)	10N-
(no. testeu)	CLSI (≥2 µg/ml)	EUCAST (≥1 µg/ ml)	MIC _{50/90}	CLSI (≥1 µg/ ml)	EUCAST (≥0.5 µg/ ml)	MIC _{50/90}
19A (165)	49 . 4 ^b	78.0 ^b	1/2	0.0	4.3	0.12/0.25
19F (35)	14.3	22.9	≤0.06/2	0.0	2.9	≤0.015/0.12
35B (92)	4.3 ^c	80.4 ^c	1/1	0.0	0.0	0.12/0.12
All (1,190)	8.7	21.0	≤0.06/1	0.0	0.7	≤0.015/0.12
a. Calculated isolates. b. Dominantl	, ,		<i>r</i>	1		0

c. Strains from all USA Census regions, and non-S rates ranged 70.0-100.0% per region.

Mendes, et al. Presented at ICAAC 2013, abstract #C2-539a.

Decrease in Mortality of Severe Pneumococcal Pneumonia (2000–2013)

Gattarello S, et al. Chest. 2014;146:22-31.

CABP: Possible Future Agents

	S. pneumoniae	Haemophilus	Atypicals	MRSA (300)	GNR
Ceftobiprole (β-lactam; Basilea)	+	+	0	+	+
Delafloxacin (Fluoroquinolone; Melinta)	+	+	+	+	+
Tedizolid (oxazolidinone; Cubist)	+	0	0	+	0
Omadacycline (tetracycline; Paratek)	+	+	+	+	+
Eravacycline (tetracycline; tetraphase)	+	+	+	+	+
GSK1322322 (peptide deformylase inhibitor; GSK)	+	+	+	+	0
BC-3781 (pleuromutilin; Nabriva)	+	+	+	+	0
Solithromycin (fluoroketolide; Cempra)	+	+	+	+	0

	1			
-				

MRSA: Challenges Considered

- Which agent for specific patient?
 - MRSA IDSA Guidelines*
 - For HA-MRSA or CA-MRSA pneumonia, IV vancomycin (A-II) or linezolid (A-II) or clindamycin (B-III), if the strain is susceptible, for 7–21 days, depending on the extent of infection
 - Other agents: ?Ceftaroline, telavancin
- Role of new diagnostic tests
 - New paradigm of pathogen-directed therapy
- Role of surveillance: still debated

*Liu C, et al. Clin Infect Dis. 2011;52:e18-55.

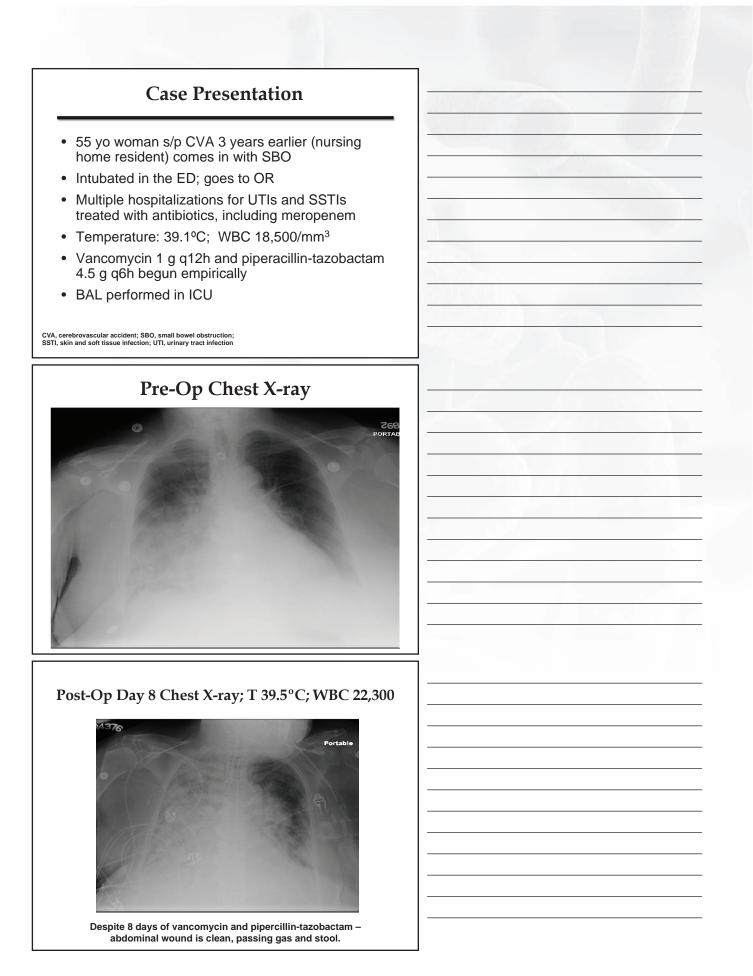
NOTES

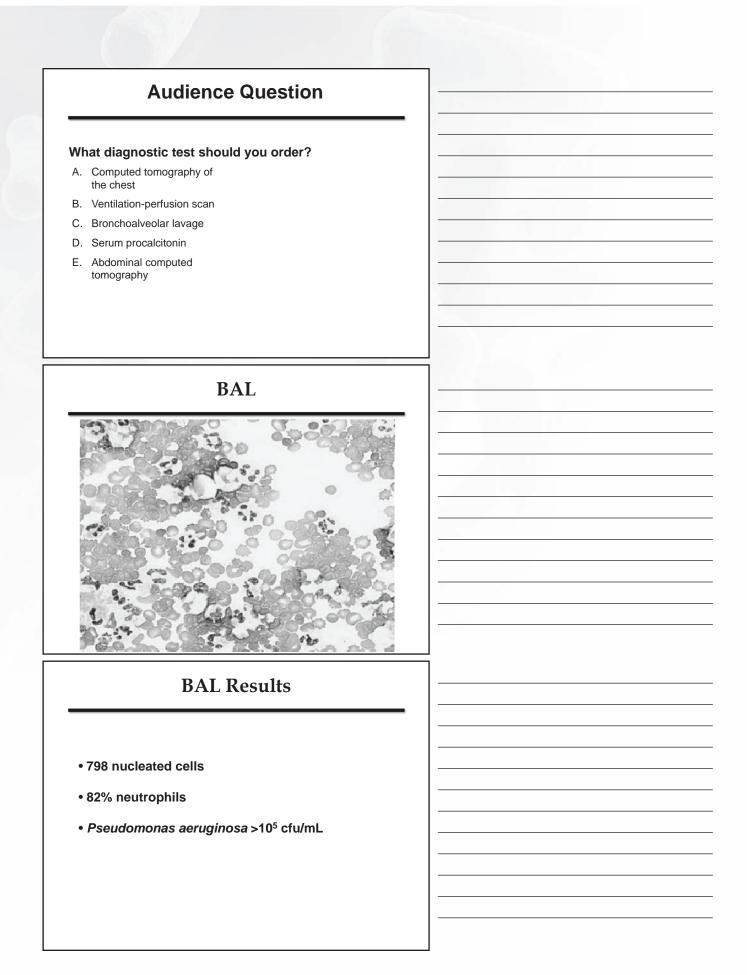
Practice Case 2 Gram-Negative Infections Optimized Approaches in Managing Gram-Negative Infections

Marin H. Kollef, MD, FACP, FCCP

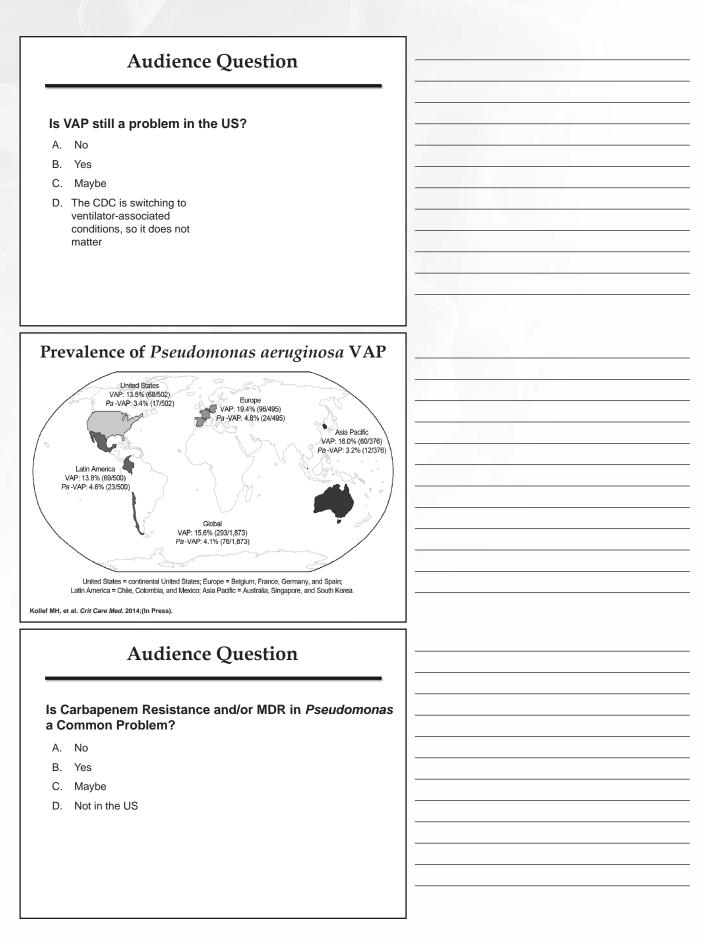
Professor of Medicine, Division of Pulmonary and Critical Care Medicine Virginia E. & Sam J. Golman Chair in Respiratory Intensive Care Medicine Director, Critical Care Research Director, Respiratory Care Services Barnes-Jewish Hospital St. Louis, MO

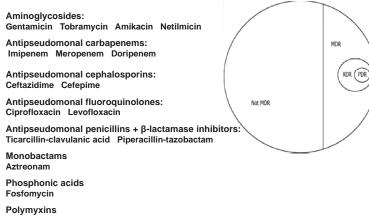
What are the Challenges of Emerging Resistant Gram-Negative Bacteria?


- Extended-spectrum beta-lactamase (ESBL)
 - Escherichia coli
 - Klebsiella species
- Carbapenemase producers
 - Escherichia coli
 - Klebsiella species
- Multiple mechanisms
 (pumps, porins, beta-lactamases)
 - Pseudomonas aeruginosa


Global Emergence of Carbapenem-**Resistant Enterobacteriaceae (CRE)**

- Klebsiella pneumoniae carbapenemase (KPC) producers in New York City and Israel
- 21% of Klebsiella pneumoniae isolates reported to the Centers for Disease Control and Prevention in 2006–2007 from NYC were carbapenem-resistant
- CRE reported in >35 states and 30 countries
- Carbapenem resistance among Enterobacteriaceae in the USA is most commonly caused by KPC


Gram-Negative Pneumonia in the ICU



Joint Definitions ECDC and CDC

Colistin Polymyxin B

Magiorakos AP, et al. Clin Microbiol Infect. 2012;18:268-81.

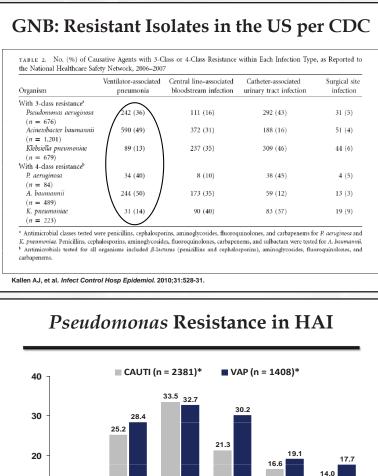
First understand your local problem with MDR/XDR!

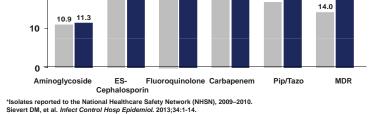
fectious Diseases Society of Ar

July 2004

GNB: Resistant Isolates in the US per CDC

TABLE 1. Pooled Mean Percentage of Resistance for 2 Definitions of Multidrug Resistance, With and Without Facilities That Contribute Large Numbers of Resistant Isolates, as Reported to the National Healthcare Safety Network, 2006–2007


	3-class r	esistanceª	4-class resistance ^b		
Organism	All	Modified	All	Modified	
Pseudomonas aeruginosa	676/6,489 (10)	631/6,400 (10)	84/3,724 (2)	79/3,672 (2)	
Acinetobacter baumannii	1,201/1,987 (60)	1,081/1,830 (59)	489/1,454 (34)	394/1,309 (30)	
Klebsiella pneumoniae	679/4,527 (15)	640/4,472 (14)	223/3,029 (7)	170/2,916 (6)	


K. pneumoniae. Antimicrobial classes were penicillins, cephalosporins, aminoglycosides, fluoroquinolones, carbapenems, and s bactam for A. baumannii.

^b Antimicrobials tested for all organisms were β-lactams (penicillins and cephalosporins), aminoglycosides, fluoroquinolones, and carbapenems.
^c Excluding large contributor facilities that contributed more than 5% of the resistant isolates.

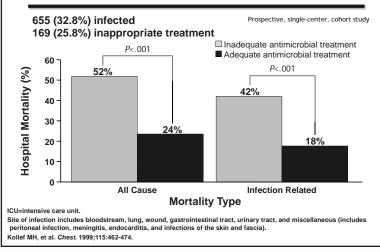
including hings contributor includes that contributed insite that 570 of the residual

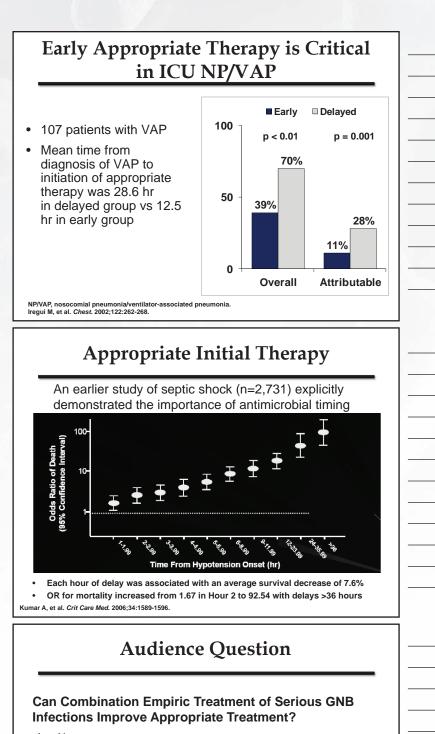
Kallen AJ, et al. Infect Control Hosp Epidemiol. 2010;31:528-31.

Pseudomonas Resistance to Carbapenems

Audience Question

Does Delayed Treatment of VAP Increase Mortality?

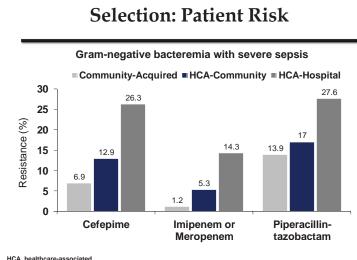

- A. No
- B. Yes
- C. Maybe
- D. I do not see cases of VAP in my hospital


Study	Patient population (n)			Mortality
		Inappropriate IAT	Appropriate IAT	risk (OR or RR)
Kollef et al. 1999 ¹	ICU admission (2000)	52.1	12.2	4.26
Kollef et al. 1999 ¹	ICU admission with documented infection (655)	52.1	23.5	2.22
Peralta et al. 2007 ²	<i>E. coli</i> bacteremia (663)	11.3	4.2	2.26
Kuti et al. 20083*	VAP (813)	NR	NR	2.34
Kuti et al. 2008 ^{3*}	Bloodstream infection (11,483)	NR	NR	2.33
Micek et al. 2010 ⁴	GNB sepsis (760)	51.7	36.4	2.30
Muscedere et al. 2012 ⁵	VAP (350)	48.7	19.5	3.05

Impact of Initial Antibiotic Therapy (IAT) on Mortality

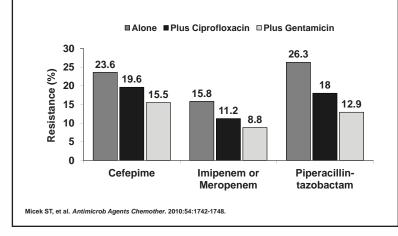
1. Kollef MH, et al. Chest. 1999;115:462-74. 2. Peralta G, et al. J Antimicrob Chemother. 2007;60:855-63. 3. Kuti EL, et al. J Crit Care. 2008;23:91-100. 4. Micek ST, et al. Antimicrob Agents Chemother. 2010;54:1742-8. 5. Muscedere G, et al. J Crit Care. 2012;27:322.e7-322.e14.

Increased Mortality With Inadequate Antibiotic Therapy in Infections Requiring ICU Admission



- A. No
- B. Yes
- C. It depends on local susceptibility patterns

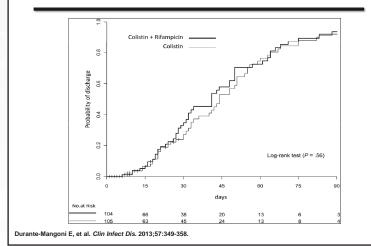
Adequacy of Antibiotic Combinations Against All Gram-negative Isolates in VAP (n=139)


Add-On Antibiotic						
Drugs	None	Cipro	Gentamicin	Amikacin		
Pip-Tazo	80%	82%	81%	96%		
Cefepime	81%	83%	82%	96%		
Meropenem	82%	83%	83%	96%		


Beardsley JR, et al. Chest. 2006;130:787-793.

HCA, healthcare-associated. Micek ST, et al. Antimicrob Agents Chemother. 2010:54:1742-1748.

The Impact of Combination Antibiotic Therapy: Hospital-Acquired Infection



Antimicrobial Agents for the Treatment of MDR Gram-Negative Infections

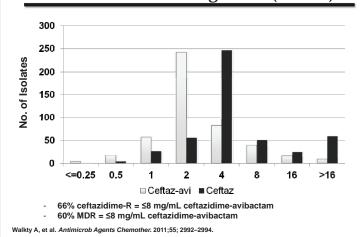
Medication	Dosage	Route
Sulbactam (amp/sulb in the US)	6 g per day	IV
Imipenem-cilastatin	500 mg every 6 h up to 1g	IV
Meropenem	500 mg to 1g every 8 h	IV
Doripenem	500 mg every 8 h	IV
Amikacin	15 mg/kg daily	IV
Tobramycin	4-7 mg/kg daily	IV
Colistin (colistimethate)	5 mg/kg/day, 2-4 divided doses	IV
Minocycline	100 mg every 12 h	IV
Tigecycline	100 mg then 50 mg every 12 h	IV

Fishbain J, et al. Clin Infect Dis. 2010;51:79-84.

Probability of Hospital Discharge for Treatment of Serious Infections Due to MDR *A. baumannii*

Investigational Antimicrobial Agents Against Gram-negative Organisms

- β-Lactamase Inhibitor Combinations
 - Ceftolozane + Tazobactam
 - Avibactam (NXL-104)
 - w/ Ceftazidime
 - w/ Ceftaroline
- MK-7655
 - w/ Imipenem-cilastatin
- Key target enzymes
 - Class A β-lactamases (e.g., KPCs)
 - Class C β -lactamases (e.g., ampC)
- None of these inhibitor combinations are active against metallo beta-lactamases (e.g., NDM)


Ceftazidime-Avibactam

- Avibactam is a non-β-lactam, β-lactamase inhibitor
- Inhibits Ambler class A, C and some D β-lactamases
- ESBL, AmpC, KPC
- 4–1024-fold more active vs. Enterobacteriaceae compared to ceftazidime alone
 - o ~4-fold more active vs. Pseudomonas aeruginosa

Genotype	Ceftazidime MIC ₅₀ / ₉₀	Ceftazidime-avibactam MIC ₅₀ / ₉₀ (fold >)
ESBL <i>E. coli</i> (n = 161)	16/64	0.12/0.25 (256)
ESBL <i>K. pneumoniae</i> (n = 29)	64/>64	0.5/1 (>64)
AmpC <i>E. coli</i> (n = 94)	16/64	0.12/0.5 (128)
ESBL and AmpC <i>E. coli</i> (n = 8)	32/>64	0.12/0.12 (>512)

Lagace-Wiens PR, et al. Antimicrob Agents Chemother. 2011;55:2434-2437.

Activity of Ceftazidime-Avibactam vs. *Pseudomonas aeruginosa* (n=470)

Ceftolozane-Tazobactam

- Ceftolozane is a novel, broad-spectrum cephalosporin with potent
 antipseudomonal activity
 - High affinity for PBP
 - Poor affinity for efflux pumps
- Tazobactam inhibits Ambler class A and some class C β-lactamases (ESBL CTX-M-15)

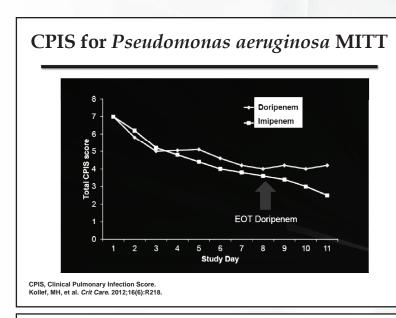
Genotype/Phenotype	Ceftolozane-Tazobactam MIC _{50/90}			
All <i>E. coli</i> (n = 1146)	≤0.12/0.25			
ESBL <i>E. coli</i> (n = 84)	0.25/1			
All K. pneumoniae (n = 395)	≤0.12/0.5			
ESBL K. pneumoniae (n = 15)	0.5/2			
- Boucher HW, et al. <i>Clin Infect Dis.</i> 2013;56:1685-1694. Zhanel GG, et al. Poster presentation at IC∆AC 2013 (Presentation No. F-1689)				

Activity of Ceftolozane-Tazobactam vs.	
Pseudomonas aeruginosa (n=2435)	

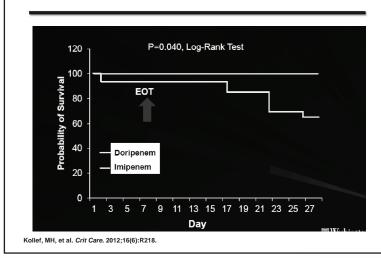
1 seudomonus deruginosu (11–2455)					
Agent	All Isolates MIC _{50/90}	MDR (158) MIC _{50/90}			
Ceftazidime	4/32	>32/>32			
Ceftolozane/ Tazobactam	0.5/1	2/16			
Ciprofloxacin	0.25/4	4/>16			
Colistin	1/2	1/2			
Meropenem	0.5/8	8/>32			
Piperacillin/ Tazobactam	4/32	128/512			
Tobramycin	≤0.5/2	4/64			

95% ceftazidime-R = ≤8mg/mL ceftolozane/tazobactam

89% of MDR strains inhibited by ≤8 µg/mL of ceftolozane/tazobactam


Walkty A, et al. Antimicrob Agents Chemother. 2013;57:5707-5709.

Back To Our Case


- Switched to aerosolized colistin and meropenem
- Colistin: 150 mg of colistimethate sodium diluted in 2 mL sterile water twice per day
- Meropenem: 1 gram every 8 hours IV
- Improved over 7 to 8 days, completed 2 weeks of therapy

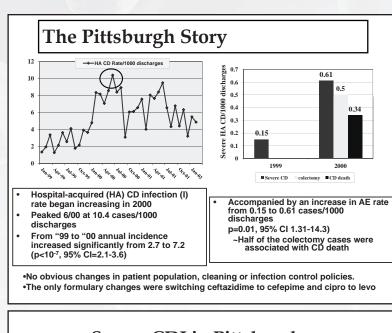
							5	
	Do	oripen	em	Ir	nipen	em		
	7-d	ау соเ	urse	10-	day co	ourse		
	n	Ν	%	n	Ν	%	Diff (%)	95% CI
Clinical cure rate								
MITT	36	79	45.6	50	88	56.8	-11.2	(-26.3; 3.8)
ME	28	57	49.1	36	59	66.1	-17.0	(-34.7; 0.8
Creatinine clearance	* (MITT)							
≥ 150 mL/min	8	18	44.4	20	28	71.4	-27.0	(-55.4; 1.4)
≥80 - 150	31	15	48.4	37	19	51.4	-3.0	-26.8; 20.9
>50 - <80	23	12	52.2	18	9	50.0	2.2	-28.7; 33.0
>30 - ≤50	5	0	0	2	1	50.0	-50.0	
≤30	2	1	50.0	3	1	33.3	16.7	
All cause 28-day mort	ality							
MITT	17	79	21.5	13	88	14.8	6.7	(-5.0; 18.5)
/ITT = Microbiological I	TT, ME ·	- Micro	obiologio	ally E	valuat	ole		
Calculated using Cock	croft -Ga	ult forr	nulas re	lating	serum	creatini	ne with age	& body weigh

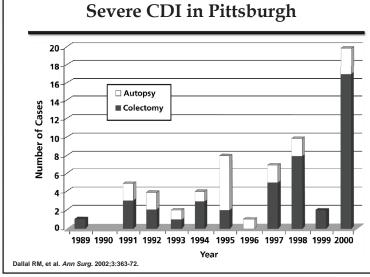
Clinical Cure & All-Cause 28-Day Mortality

28-Day All-Cause Mortality: P. aeruginosa

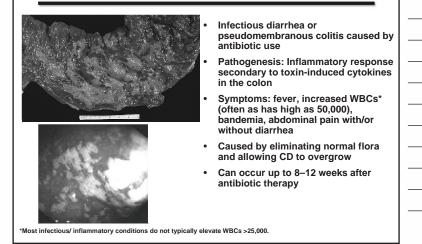
Summary

- Resistant GNR infections are emerging risk factors for severe morbidity and high mortality.
- Expanding regional and global threat
- Critical public health need for
 - Improved detection of MDR GNR colonization and infection
 - Effective preventive measures
 - Development of novel antimicrobial agents

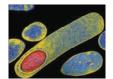

NOTES



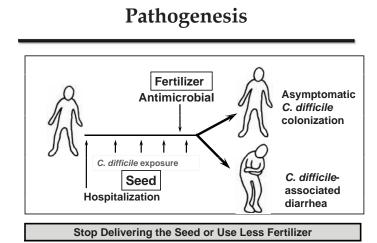
Practice Case 3 Clostridium difficile Infections Optimized Approaches in Managing C. difficile Infections


Carlene A. Muto, MD, MS

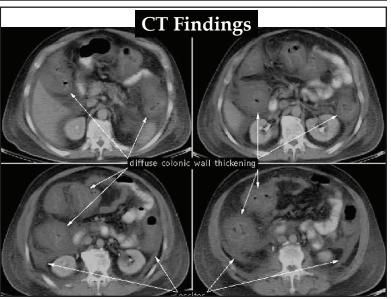
Associate Professor of Medicine Medical Director of Infection Control and Hospital Epidemiology Center for Quality Improvement and Innovation UPMC Health System Pittsburgh, PA

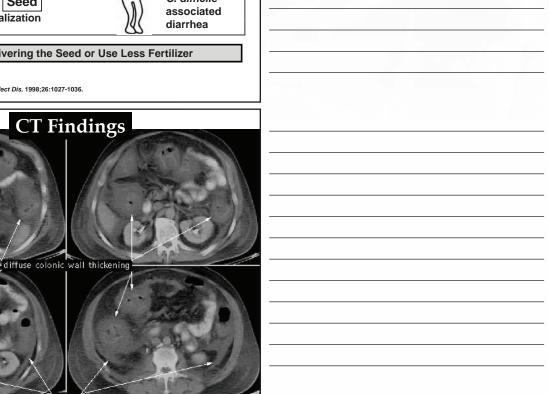


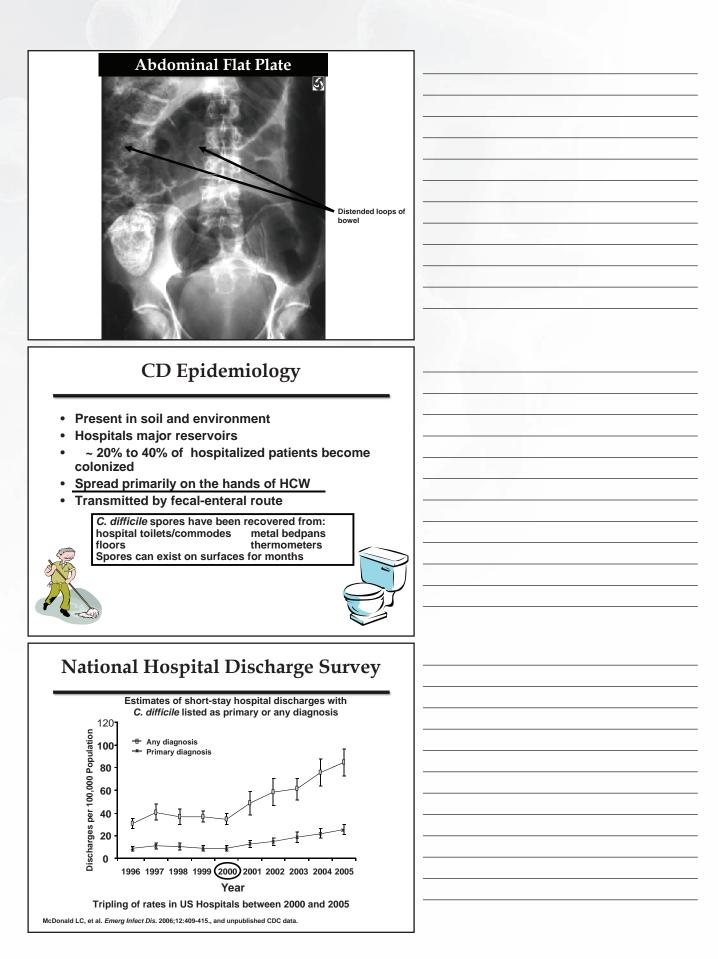
CD Colitis: Background


Microbiology

- Ubiquitous
- Anaerobic Gram-positive spore-forming rod
- When the normal gastrointestinal (GI) ٠ flora is disrupted, CD exposure may result in CDI
- Slow doubling time (20-40 minutes),





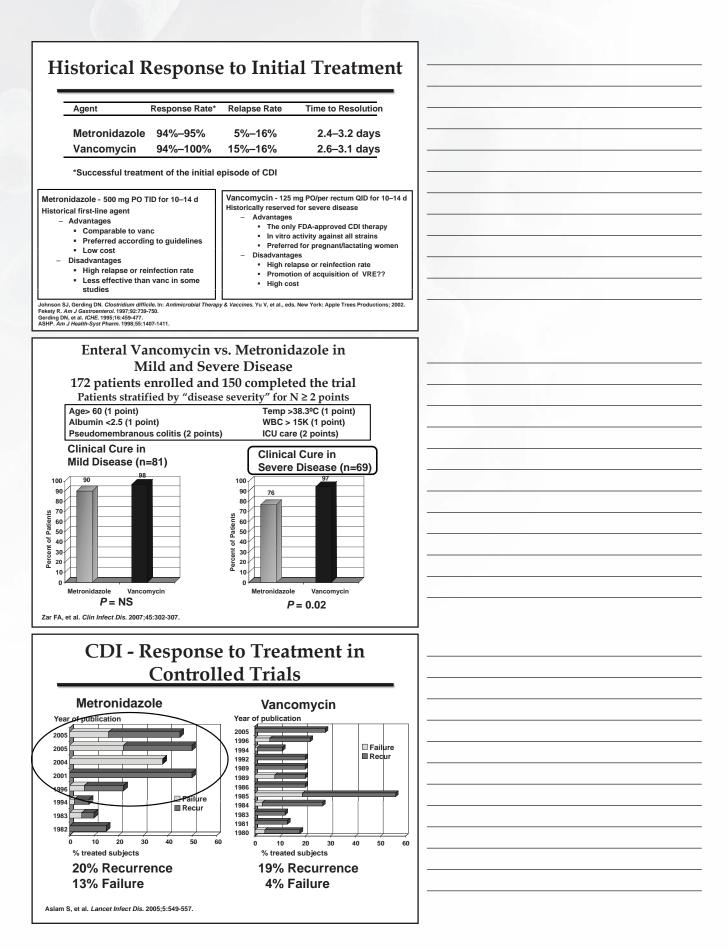

Aslam S, et al. *Lancet Infect Dis.* 2005;5:549-557. Bouza E, et al. *Med Clin North Am.* 2006;90:1141-1163.

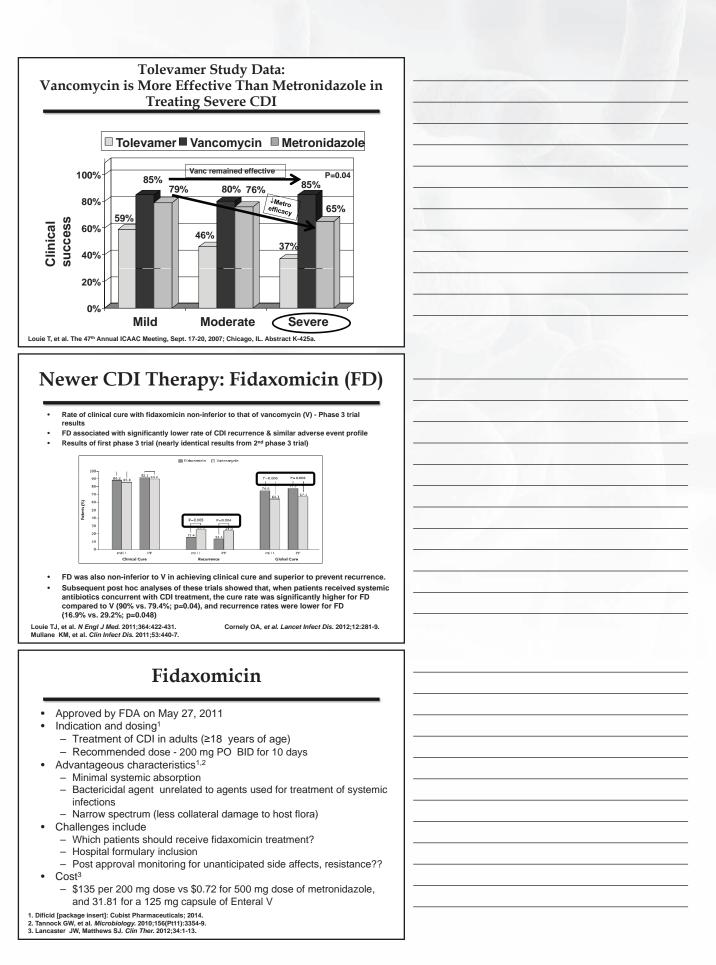
From Johnson S, Gerding DN. Clin Infect Dis. 1998;26:1027-1036.

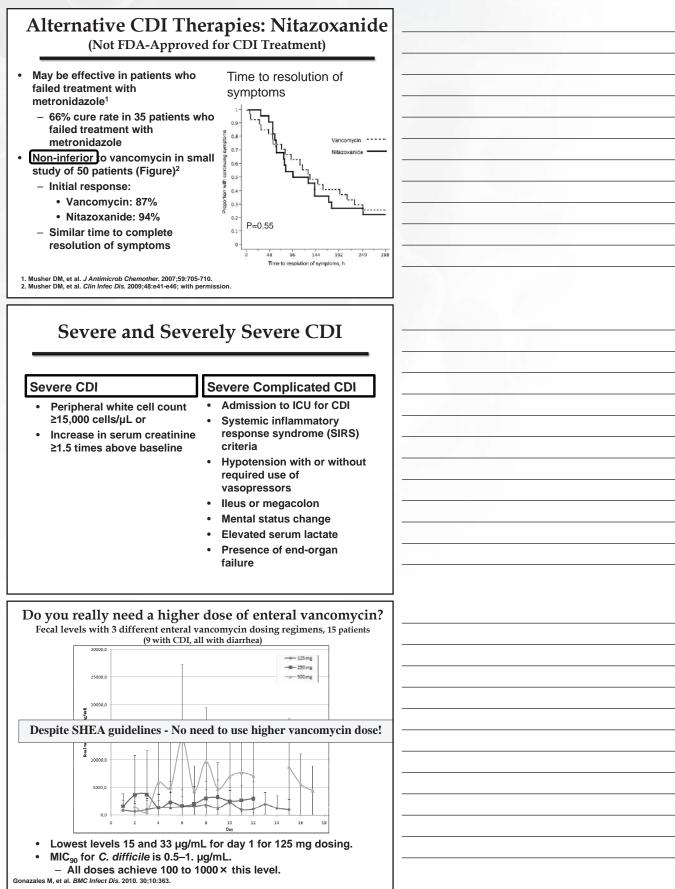
Case

- An 84-year-old female presented with diarrhea.
- One month PTA she presented to her PCP with C/O of an exquisitely tender leg and fever and was diagnosed with *Strep. pyogenes* (Group A Strep) necrotizing fasciitis - now S/P surgical debridement.
- She was treated with nafcillin + clindamycin throughout surgical debridements – 1 week.
- Then received an additional 2 weeks of nafcillin. Her last dose was 1 week PTA.
- She did well until 2 days PTA when she developed diarrhea and abdominal pain.
 - 10 bowel movements per day, worsening abdominal pain, and nausea/vomiting, tactile temps at home.
 - Denied weight loss, and bloody stool.
 - She has had no sick contacts, denied travel and well water use and has not eaten outside her home.
 - Other medical history is only significant for peptic ulcer disease for which she takes pantoprazole.

Case (cont'd)


- On exam the patient was awake but disoriented.
- T = 101.5°C HR = 122/min RR = 24/min BP = 90/55
- She had lower quadrant tenderness and distention. Bowel sounds were absent.
- The surgical site was without erythema/discharge. Otherwise the exam was unremarkable.
- Lab values
 - WBC = 49,500 (55% neutrophils, 40% bands) LFTs = normal
 - Albumin = 2.1


- Lactate = 5.5
- Creatinine = 2.5 (1.3 last admission)
- Despite fluid resuscitation BP remained low so vasopressors initiated and admitted to the ICU
- Broad-spectrum antibiotics were not given.


Audience Question

What is the empiric management for this patient?

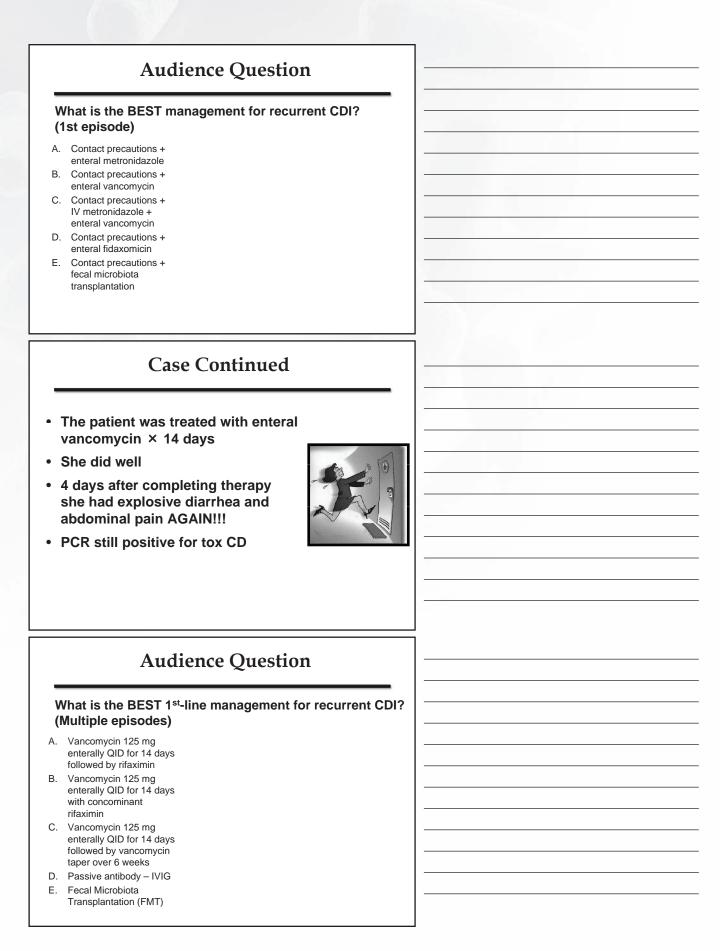
- A. Contact precautions + enteral metronidazole
- B. Contact precautions + enteral metronidazole + enteral vancomycin
- C. Contact precautions + IV metronidazole + enteral vancomycin + surgical evaluation
- D. Contact precautions + enteral fidaxomicin + surgical evaluation
- E. Contact precautions + fecal microbiota transplantation

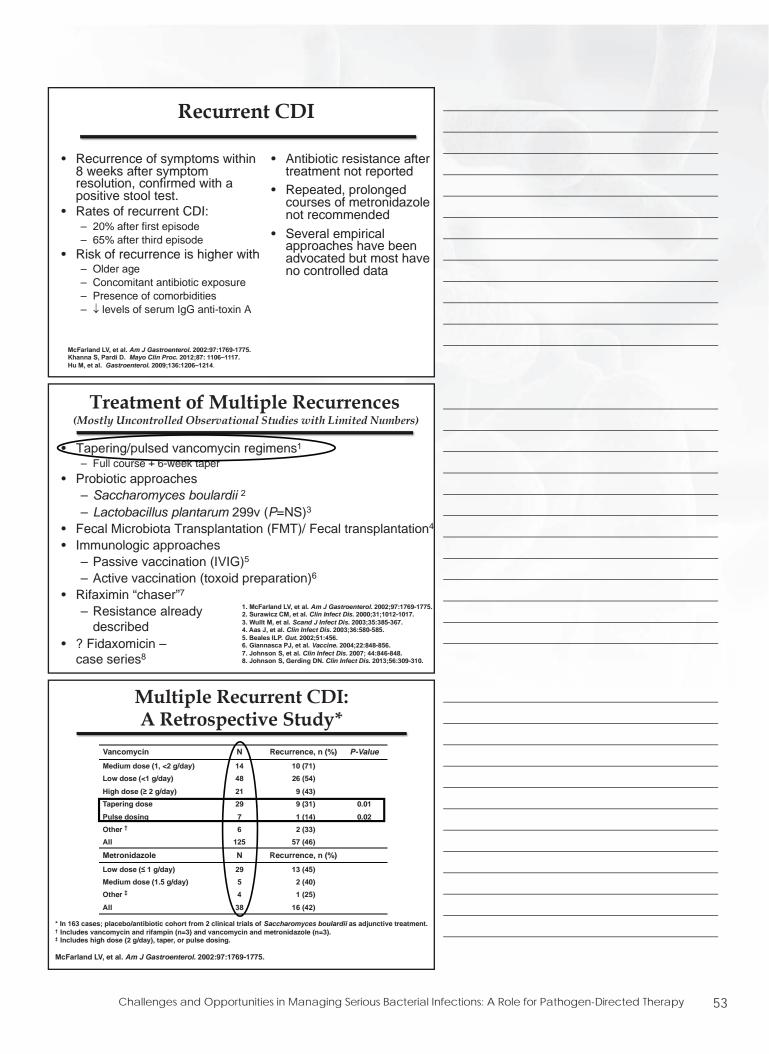
Management of Fulminant or Severe **Complicated Disease**

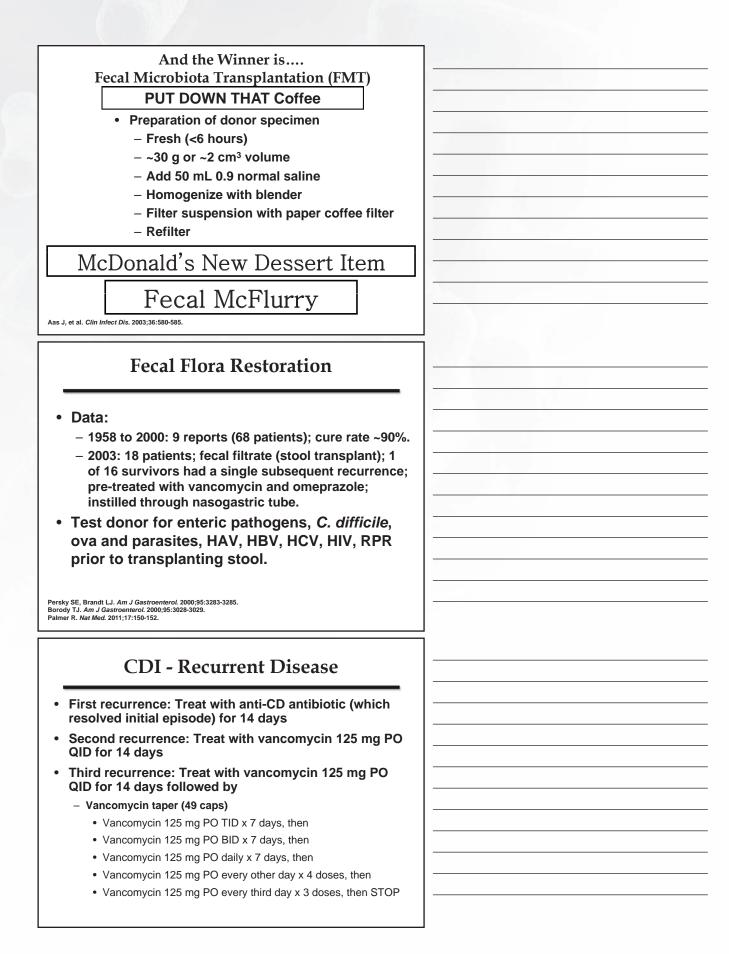
- Empiric treatment includes enteral vancomycin with IV metronidazole (ileus)
 - Vancomycin 125 mg enterally QID
 - Vancomycin may also be administered rectally via enema
- · Immediate surgical evaluation/consultation
 - Colectomy may be life-saving
 - Total abdominal colectomy with end ileostomy is procedure of choice
 - Diverting ileostomy with vancomycin washout Colon sparing

Lamontagne F, et al. Ann Surg. 2007;245:267-272. Neal MD, et al. Ann Surg. 2011;254:423-7.

Alternative Adjunctive Therapies for Severe CDI

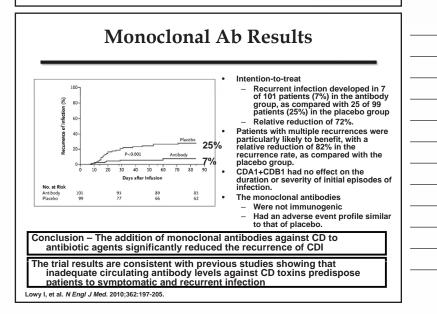

- (Not FDA-Approved for CDI Treatment)
- Tigecycline¹⁻³
 - Case reports and small case series with IV tigecycline
 - Usually given in conjunction with other therapies for severe CDI
- Intravenous Immunoglobulin (IVIG)^{4,5}
 - Several case series in severe CDI, but evidence for benefit is inconclusive

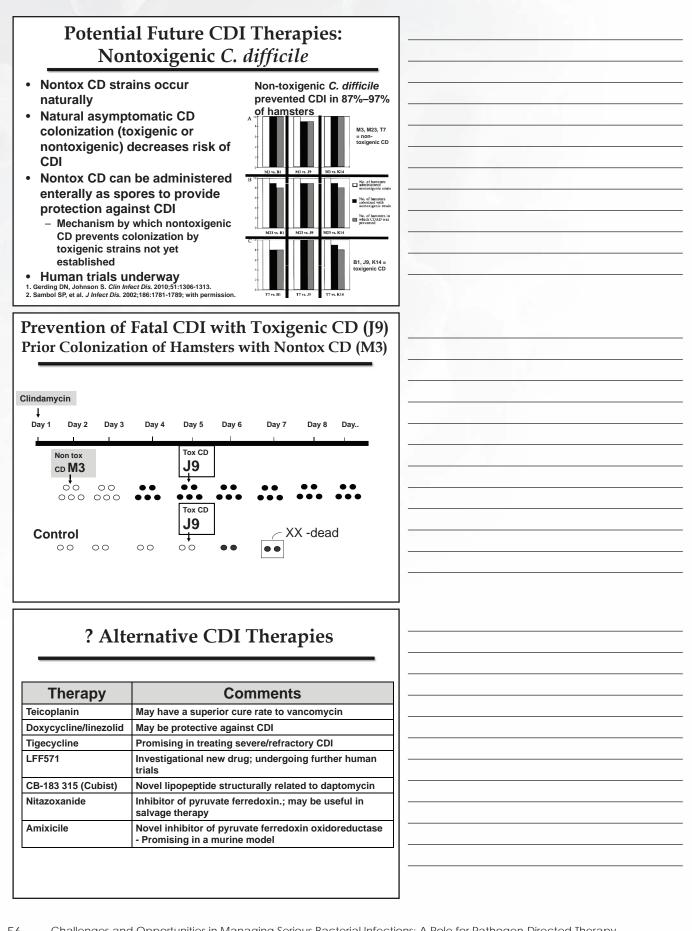

- Lu CL, et al. Int J Antimicrob Agents. 2010;35:311-312.
 Herpers BL, et al. Clin Infect Dis. 2009;48:1732-1735.
 Kopterides P, et al. Anaesth Intensive Care. 2010;38:755-758.
 Abougergi MS, et al. J Hosp Med. 2010;5:E1-E3.
 O'Horo J, et al. Int J Infect Dis. 2009;13:663-667.


Case Continued The patient was treated with IV metronidazole and enteral vancomycin (per rectum) CT abdomen/pelvis revealed diffuse colitis consistent with C. difficile. She remained febrile, had increasing abdominal pain and profuse watery diarrhea. WBC remained elevated and lactate was VANCOCIN'HO increasing so on hospital day # 2 the patient was taken to the OR, found and received a loop ileostomy Post op WBC was decreased and BP normalized. The patient made a full recovery. 1 month later the patient had a respiratory illness, likely viral.

Had mild abdominal pain WBC = 16.000

She was treated with moxifloxacin. 2 days later she developed diarrhea and again had a positive PCR for tox CD.




Product Name (Type)	Patient Response	Development	
C. difficile vaccine Cdiffense	Phase II 445 volunteers age 40 – 75 4-fold Î in toxins A and B detectable antibodies. Peak responses at day 60	Phase III 15,000 volunteers, age ≥ 50 randomize in a 2:1 ratio to vaccine or placebo group*	
C. difficile vaccine (PF-06425090)	Pending	Phase II	
RBX2660 (microbiota suspension), "fake poop" ready-to-use enema format	40 patients at 13 US centers	Phase II	
MK-3415A (actoxumab + bezlotoxumab)	6.9% vs 25% recurrent CDI	Phase III	
VP 20621, spores of a non-toxigenic <i>C.</i> <i>difficile</i> strain (NTCD)	168 patients randomized and dosed following antibiotic treatment for CDI. VP20621 reduced the incidence of CDI recurrence by ≥ 50 % vs. placebo, CDI recurrence rate was 2% (2/86) in the treatment group colonized with VP20621.	Phase II	
	(Type) C. difficile vaccine Cdiffense C. difficile vaccine (PF-06425090) RBX2660 (microbiota suspension), "fake poop" ready-to-use enema format MK-3415A (actoxumab + bezlotoxumab) VP 20621, spores of a non-toxigenic C.	C. difficile vaccine Cdiffense Phase II 445 volunteers age 40 - 75 4-fold î in toxins A and B detectable antibodies. Peak responses at day 60 C. difficile vaccine (PF-06425090) Pending RBX2660 (microbiota suspension), "fake poop" ready-to-use enema format Pending MK-3415A (actoxumab + bezlotoxumab) 6.9% vs 25% recurrent CDI VP 20621, spores of a non-toxigenic C. difficile strain (MTCD) 168 patients randomized and dosed following antibiotic treatment for CDI, VP20627 reduced the incidence of CDI recurrence by 250 % vs. placebo, CDI	

CD Monoclonal Antibodies Secondary CDI Prevention

- Multicenter, randomized, double- blind, placebocontrolled trial
- Two novel neutralizing human monoclonal antibodies
 C. difficile toxins A (CDA1)
 - C. difficile toxins B (CDB1)
- 484 eligible patients at 30 centers in the US and Canada
- 200 were enrolled in the study
- Patients were given standard therapy for *C. difficile* infection and were randomly assigned to receive
 - A single intravenous infusion of either CDA1+CDB1
 Saline placebo
- Patients were followed for 84 days
- The primary outcome measure was recurrent *C. difficile* infection.

Lowy I, et al. N Engl J Med. 2010;362:197-205.

BEST CDI Management Strategy

Control Measures-"The CD Bundle"

1. Identify disease and implement appropriate prevention measures

- a) Contact Precaution Extended to entire duration of hospital stay
- b) Hand washing with soap and water
- c) Increased case finding methodologies
- d) Early identification
 - a) RNs could order tests without MD order
- e) Informatics tools (alerts)
- f) Informatics tools (flags)
- g) Enhanced environmental cleaning
 - i. Sodium hypochlorite (Bleach) or H2O2/acetic/peroxyacetic acid ii. Cubical curtain changes
- iii. Common equipment

2. Target antibiotic restriction

Muto CA, et al. Clin Infect Dis. 2007;45:1266-73.

Case Conclusion

• The patient was treated with enteral vancomycin × 14 days followed by a 6 week enteral vancomycin taper

Patient had no more recurrences!!

Continuing Professional Development Reflect | Plan | Do | Evaluate

Center for Independent Healthcare Education is committed to supporting pharmacists in their Continuing Professional Development (CPD) and lifelong learning. Please use this form to incorporate the learning from this educational activity into your everyday practice.

Continuing Professional Development: a self-directed, ongoing, systematic and outcomes-focused approach to learning and professional development that assists individuals in developing and maintaining continuing competence, enhancing their professional practice, and supporting achievement of their career goals.

CPD Value Statement:

"Pharmacists who adopt a CPD approach accept the responsibility to fully engage in and document their learning through reflecting on their practice, assessing and identifying professional learning needs and opportunities, developing and implementing a personal learning plan, and evaluating their learning outcomes with the goal of enhancing the knowledge, skills, attitudes and values required for their pharmacy practice."

REFLECT

Consider my current knowledge and skills, and self-assess my professional development needs and goals related to serious bacterial infections.

PLAN

Develop a "Personal Learning Plan" to achieve intended outcomes, based on what and how I want or need to learn.

Develop objectives that are specific for you, measurable, achievable, relevant to the learning/ practice topic, and define the time frame to achieve them.

Implement my learning plan utilizing an appropriate range of learning activities and methods.

List learning activities that you will engage in to meet your goals.

List resources (e.g. materials, other people) that you might use to help achieve your goal.

EVALUATE

Consider the outcomes and effectiveness of each learning activity and my overall plan, and what (if anything) I want or need to do next.

Monitor progress regularly toward achievement of your goal.

Please remember to complete and return the "Activity Evaluation and Credit Application Form" to program staff

Upcoming Educational Activity

Online Learning Activity

Online Learning Activity

For healthcare professionals who were unable to participate in the presentation, an online learning activity based on the live program will be available.

www.vemcomeded.com

Also Available::

BACTERIAL INFECTIONS IN PATIENTS WITH CANCER New Challenges New Opportunities

Bacterial Infections in Patients with Cancer: New Challenges, New Opportunities

This continuing medical education activity is designed for physicians, pharmacists, and other healthcare professionals who care for patients with or at-risk of serious bacterial infections, including patients being treated for malignancy and/or with neutropenic fever. This program is divided into 3 episodes that focus on key pathogens: (1) Gram-positive bacteria (e.g., *S. aureus*, MRSA, enterococci), (2) Gram-negative bacteria (e.g., ESBL-and carbapenemase-producing Enterobacteriaceae, *P. aeruginosa*), and (3) *C. difficile*. Current trends in the evolving epidemiology of infection in patients with cancer are discussed. Management approaches focus on effective treatment strategies for infections caused by MDR bacteria.

This activity is based on the CME Ancillary Educational Event held adjunct to ASCO 2014 Annual Meeting.

www.vemcomeded.com

